Nissan Studying Electrons In Batteries

With electric vehicles and hybrids gaining in popularity, Nissan asked itself: can the battery performance of electric vehicles be improved by observing electrons?

Nissan sought an answer to this question through an advanced research project in partnership with universities in Japan.

The result: Nissan Motor Company and its affiliate Nissan Arc Ltd. announced March 13 the development of the world’s first analysis method that enables direct observation of electron activity in the cathode material of lithium ion batteries during charging and discharging.

Nissan declared applying this analysis technique to future research and design of battery materials could enable Nissan researchers to develop high-capacity and high-durability batteries that may extend the driving distance of zero emission EVs and improve their durability.

Nissan Arc Ltd. is a 100-percent subsidiary of Nissan Motor Company, developed the analysis method in a joint R&D effort with Tokyo University, Kyoto University and Osaka Prefecture University.

Nissan said the newly developed technique provides an accurate depiction of how electrons are emitted from certain elements that constitute the cathode material of lithium ion batteries when charging and discharging.

“Creating this analysis technique was a major step toward the further development of high-capacity, next-generation lithium ion batteries,” said Takao Asami, Nissan senior vice president and president of Nissan Arc Ltd. “It will play an important part in our future R&D aimed at extending the driving range of future zero emission vehicles.”

In order to develop high capacity, long-life lithium ion batteries, explained Nissan, the maximum possible amount of lithium must be stored in the electrode’s active material, which allows it to generate the highest possible number of electrons. To develop such a material, an accurate reading of the electron activity inside the battery is essential. Existing analysis methods did not allow researchers to observe the movement of electrons. It was not possible to determine how the various electrodes’ active material — i.e. manganese (Mn), cobalt (Co), nickel (Ni), oxygen (O) — was emitting electrons and how many electrons were actually being emitted.

Per Nissan, the newly developed analysis method combines x-ray absorption spectroscopy that utilizes L-absorption edges and the first principle calculation from Japan’s Earth Simulator supercomputer.

X-ray absorption spectroscopy had been used in the past to analyze batteries, continued Nissan. However, the majority of this analysis was done using K-absorption edges that can only observe restrained electrons in the atom (electrons that are not involved in the charging and discharging due to the vicinity to the nucleus) and not the actual electrons involved in cell reaction. By applying x-ray absorption spectroscopy that utilizes L-absorption edges, electrons that were directly involved with the cell reaction can be observed. Accurate analysis of the amount of electron mobility is made possible by combining the observation results with first principle calculations from the Earth Simulator supercomputer.

For years scientists have wanted to understand the origin of electrons during charging and discharging, and this newly-developed analysis method finally makes it possible, stated the Japanese company. Scientists can observe the exact phenomenon inside a battery cell, especially the behavior of active materials of electrodes, permitting further study of better-performing, longer-lasting electrode materials.

Nissan Arc said it has used the new analysis technique to investigate lithium-rich high-capacity electrode materials, which are considered promising agents to increase energy density by 150 percent. The analysis revealed that at a high potential state, electrons originating from oxygen were active during charging. Meanwhile, electrons that originated from manganese were observed to be active during the discharge reaction. These findings were a big step forward toward the commercial development of lithium-rich electrode materials, which can produce higher-capacity, long-lasting batteries.

0

想看更多 不感兴趣
重复、旧闻
内容质量差
确定
新能源汽车消费图谱出炉 专家预警新能源汽车产能过剩
2030年,电动车会比内燃机动力车更便宜?
继艾瑞泽5爆红之后,艾瑞泽5e来了
日产联手10家企业共建氢燃料加注站
法拉第未来:即将启动A轮融资 贾跃亭仍是股东
电动物流或将成主流 助新能源汽车继续回暖
东风斥资组建电控系统 未来将应用于东风新能源车型
从新能源汽车三大商业模式看产业未来
长安计划未来十年投资180亿元 推24款新能源车型
新能源汽车补贴越来越难搞? 部分车企现金吃紧
德美联合调查戴姆勒 克莱斯勒集团否认排放指控
将快充进行到底,微宏动力MpCO快充电池能量密度达170Wh/kg
吴甘沙:无人驾驶的商业化破局与驭势科技的从1到10
日产汽车联手10家企业共建氢燃料加注站,助力燃料电池汽车发展
这些车续航堪比特斯拉 价格却连它零头都不到
携三大创新技术和动力总成系统  福建万润亮相2017道路运输展
增加运动性 大众将推高尔夫GTE性能版
还原一个更真实的特斯拉 Model 3:它可能没那么酷
大金主离去后 法拉第未来计划融资10亿美元自救
戴姆勒斥资5亿欧元兴建锂电池工厂,挑战Tesla在绿色电力领导地位
下一篇

电动汽车充换电设施建设模式研究与实践(一)

电动汽车,充换电设施



第三方登录
纯净阅读
意见反馈

反馈和建议 在线回复

第一电动网
Hello world!